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Abstract
In large decentralised teams agents often share un-
certain and conflicting information across the net-
work, and it is a major challenge for team members
to reach accurate conclusions individually. Previ-
ously, this problem was approached by introduc-
ing a communication overhead in order to reason
about the accuracy of information or to reach agree-
ments interactively. We address the more challeng-
ing problem of improving the accuracy in settings
where communication is strictly limited to sharing
opinions about the real state of the common sub-
ject of interest. We do so by presenting a novel
decentralised algorithm, AAT, which reaches the
settings of emergent behaviour in a team where
agents’ opinions becomes dramatically more accu-
rate. We show that our solution significantly out-
performs the existing algorithm, DACOR, and de-
livers an accuracy of opinions close to a team pre-
tuned for the highest performance by empirical ex-
ploration of its parameters. Moreover, in contrast
to the message-passing DACOR, our algorithm has
a minimal communication requirement, where only
opinions are shared, as well as significantly lower
computational expenses. Finally, AAT delivers a
high accuracy of opinions in settings where up to
half of the team does not participate in optimising
sharing parameters.

1 Introduction
The success of any individual in a large communication net-
work, such as a sensor network or an online social commu-
nity, heavily depends on its access to timely and accurate in-
formation. Naturally, to overcome uncertainty in the obser-
vations of different team members, the ultimate goal for a co-
operative team is to share information efficiently. Although
not every agent in the team may be able to make its own ob-
servations about the common subject of interest, the whole
system can benefit from its collaboration in opinion sharing
processes. Specifically, agents can reduce uncertainty by fus-
ing information from a number of sources and propagating it
to more distant team members. Thus, the common aim is to
filter out inaccurate information in the process of its dissemi-
nation.

In this paper we specifically focus on the problem of ef-
ficient information exchange in a large communication net-
work in order to improve the accuracy of agents’ beliefs about
a common subject of interest. Existing solutions are based on
interactive agreement protocols [Olfati-Saber et al., 2007] or
require annotating communicated information to enable rea-
soning about its accuracy [Moreau, 2009]. However, these
techniques require a communication overhead to operate. We
address the more challenging problem when agents have to
form accurate beliefs in a setting where communication is
strictly limited. In order to minimise communication, each
agent must filter and abstract all incoming information and
communicate only its opinion about the true state of the com-
mon subject of interest. This restriction can be found in many
real world communication networks, such as sensor networks
where it is expensive to share raw data; or social communi-
ties where people rely on the conclusions of others when they
do not have enough resources or skills to analyse the original
information. We model these settings in which a small subset
of agents have access to the sensors, while others have to rely
only on opinions of their network neighbours. Since sensors
are noisy, opinions in a team may conflict and agents have to
decide which to support. Such settings expose the team to the
double counting fallacy, when the same opinion may arrive
via different paths and an agent is not able to identify this,
that indicates on the complexity of the problem. By study-
ing the information dynamics in social networks, Bikhchan-
dani et al. [1992] show that an opinion propagation occur
in the form of opinion cascades (or avalanches) when a sin-
gle new observation may trigger a large number of agents to
change their opinions and cause a sudden change in the sys-
tem’s state. Subsequently, it was shown that such systems ex-
hibit complex emergent behaviour in dissemination processes
[Watts, 2002] that in some cases can be exploited.

Specifically, researchers recently have studied an impact
of this emergent phenomenon on the accuracy of shared opin-
ions. Glinton et al. [2009] offered the corresponding model of
propagation and fusion of conflicting opinions where agents
form their public opinions based on their private beliefs about
the real state of the subject of interest. In this model agents in-
form their beliefs by observing a small number of noisy sen-
sors, and receiving opinions from their network neighbours.
Each agent uses formal reasoning and updates its belief with
a certain trust level in the received opinions. A trust level rep-
resents the number of the same opinions that an agent has to



receive to adopt this opinion and propagate it further. Clearly,
this is a key factor in influencing the dynamics of the opin-
ion sharing process. It was found that in a particular range
of trust levels, the opinions of agents are dramatically more
accurate. The analysis showed that in this critical state, the
sizes of opinion cascades are distributed by a power law. The
frequent smaller cascades prevent the team from overreacting
to inaccurate opinions, however, through less frequent, large
cascades occur and disseminate the locally vetted opinions to
the rest of the team. However, the range of these parameters
necessary to achieve the desirable properties is very narrow
and very sensitive to the configuration of the team.

To achieve optimised performance in a complex communi-
cation network, Glinton et al. [2010] proposed the Distributed
Adaptive Communication for Overall Reliability (DACOR)
algorithm. DACOR adjusts the agents’ trust levels according
to the estimated local branching factor – the expected num-
ber of neighbours that would change their opinions following
the change of an agent’s opinion. In particular, it was found
that in the area of optimised parameters the branching factor
is close to 1. However, actually performing a decentralised
estimation of the branching factor requires significant mes-
sage overhead compared to the number of messages used to
share opinions itself. Additionally, as our empirical evalua-
tion reveals, the internal parameters of DACOR are sensitive
to the team’s configuration and DACOR has to be tuned indi-
vidually for different domains.

To address these shortcomings, we present a decentralised
algorithm for Adaptive Autonomous Tuning (AAT) of agents’
trust levels. The approach is based on our observation that the
team becomes dramatically more accurate when the agents’
trust levels are minimally sufficient for disseminating opin-
ions on the team scale. Thus, in contrast to DACOR, it is pos-
sible for an agent to rely solely on observing its local infor-
mation dynamics, rather than resource-intensive estimations
of the branching factor. In more detail, the contributions of
this paper are:

1. We develop a novel decentralised algorithm, AAT, that
improves the accuracy of the opinions in a large team
with a complex communication network. It does so by
tuning the dynamics of opinions sharing processes to
reach the area of optimised parameters. This is the first
solution that has the minimal communication require-
ment and thus, communication is strictly limited to the
sharing of opinions. In contrast, DACOR communicates
4-7 times more messages than is required to share the
conflicting opinions in the area of optimised parameters.

2. We empirically evaluate AAT and show that it signif-
icantly outperforms the state-of-the-art solution, DA-
COR. Specifically, using AAT, 80-90% of the agents’
opinions correspond to the real state of the common sub-
ject of interest. This figure is significantly higher than
65-75% for the existing algorithm, and close to 90-95%
of the team pre-tuned for the highest accuracy by an ex-
pensive empirical exploration of its parameters. More-
over, AAT introduces less computation expenses and re-
quires 104 times less agents’ actions.

3. We show that AAT is the first decentralised solution de-
signed to improve accuracy in teams with indifferent
agents that do not participate in the optimisation pro-

cess. Specifically, it significantly improves the accuracy
when up to 50% of the agents in the team are indifferent.

In contrast to the focus in the literature on trust, here we
discuss cooperative teams with indifferent agents. Instead of
considering the reliability of peers, trust levels measure the
optimal contribution of received opinions to agents’ beliefs,
assuming that any peer might be exposed to a misleading
opinion. Therefore, accurate estimations of such trust lev-
els based solely on local observations also contribute to the
development of elaborate trust models. Specifically, this pro-
vides the initial trust values that improve the accuracy of opin-
ions without any additional knowledge about the settings.

The remainder of this paper is organised as follows. In
Section 2 the model of the environment, its properties and
metrics are discussed. In Section 3 the agents’ dynamics are
analysed and AAT is presented. Then, in Section 4 AAT is
empirically evaluated to demonstrate its advantages in con-
trast to DACOR and it is compared with a team pre-tuned for
the highest accuracy. Finally, Section 5 concludes this work.

2 Problem Description
In this section, we formally describe a generic model of opin-
ion sharing that was recently proposed and analysed by Glin-
ton et al. [2009; 2010]. The aim of the model is to capture
the complex dynamics of opinion sharing about the real state
of the common subject of interest, in a network of coopera-
tive agents. In this model, some agents have access to noisy
sensors, and they introduce to the team conflicting opinions
of which only one is correct. However, due to communica-
tion constrains agents can communicate to their neighbours
only opinions without any additional information. Thus, each
agent has to decide how much trust it has to put in the received
opinions to form its own accurate opinion.

2.1 Model
Formally, the model consists of a large set of agentsA = {il :
l ∈ 1 . . . |A|}, |A| � 100 connected by a undirected network
G(A,E) where E is the set of edges indicating which agents
are neighbours and can therefore communicate. Each agent,
i ∈ A has a neighbourhood Ni = {j : ∃ (i, j) ∈ E} and the
average number of neighbours is defined as the expected de-
gree d, where d =

∑
i∈A |Ni|/|A|. Since agents do not have

enough resources to support a large number of communica-
tion links, the network is sparse d� |A|.

The aim of every agent, and eventually of the whole team,
is to find the true state b of the common subject of interest, for
example B = {white, black}, where b ∈ B. We support
the assumption that B is binary following the argument that
a binary choice can be applied to a wide range of real world
situations [Watts and Dodds, 2007]. However, our approach,
presented later, can be generalised for |B| > 2.

To recover the true state, agents rely on noisy sensors and
their neighbours’ opinions about the value of b. To decide
which conflicting opinion to adopt, agent i forms its private
belief Pi(b=white), which is the probability of b = white
(further denoted as Pi) and consequently 1−Pi is the proba-
bility of b = black. The agent updates its belief starting from
some initial prior P ′i and the ongoing belief is denoted by P ki
where k is the current step of the belief update sequence.



Only a small subset of agents S ⊂ A, |S| � |A| have noisy
sensors and can make observations of the true state b. Each
agent with a sensor i ∈ S periodically receives an observa-
tion si ∈ B with a low accuracy r, which is a probability of
returning the true state b (0.5 < r � 1). To incorporate the
new observation from the sensor into its belief, the agent uses
formal reasoning based on Bayes’ Theorem:

P ki =


rPk−1

i

(1−r)(1−Pk−1
i )+rPk−1

i

if si = white

(1−r)Pk−1
i

r(1−Pk−1
i )+(1−r)Pk−1

i

if si = black
(1)

After updating its belief P ki with a number of observations,
the agent becomes confident enough to form its opinion oki
about the true state b once P ki exceeds thresholds, as follows:

wh
it
e

bl
ac
k

un
de
te
r

Pki

oki

1P'i0 σ1-σ

oki =


undeter., initial
white, if P ki ≥ σ
black, if P ki ≤ 1–σ
ok−1i otherwise

(2)

where thresholds (1–σ, σ) are the confidence bounds and σ >
0.5. The opinion update function has the shape of a sharp
hysteresis loop, and because sensors are noisy, it is possible
that later observations will support the opposite opinion, and
the agent may change its opinion.

Every time the agent changes its opinion, it communicates
the new opinion to its neighbours. Consequently, these neigh-
bours update their own beliefs and may form their own opin-
ions. As with sensor observation, the agent uses Bayes’ The-
orem to update its belief, such that when the agent receives
new opinions from its neighbours {oj : j ∈ Ni}, it uses the
following belief update rule for each received opinion oj :

P ki =


tiP

k−1
i

(1−ti)(1−Pk−1
i )+tiP

k−1
i

if oj = white

(1−ti)Pk−1
i

ti(1−Pk−1
i )+(1−ti)Pk−1

i

if oj = black
(3)

where ti ∈ [0, 1] is the trust level that measures the impor-
tance of the neighbour’s opinion. Note, the similarity with
Eq. 1 such that the trust level is analogous to the accuracy
of a noisy sensor. However, unlike the accuracy r of a sen-
sor, trust level ti is unknown and each agent must find its
best value. We assume that agents in this model are coopera-
tive and thus, we consider only the range ti ∈ [0.5, 1], where
ti = 0.5 indicates that the received opinion is ignored, and
ti = 1 is the maximum trust such that the agent changes its
belief to P ki = {1, 0} (depending on the received opinion)
regardless of its previous value P k−1i . The model implies
that the neighbours can be equally wrong in their opinions
since sensor readings are introduced randomly. Therefore,
the agent does not differentiate the sources of opinions and
applies the same trust level ti for all its neighbours.

If the agent changes its opinion following a received opin-
ion from its neighbour, it participates in an opinion cascade
where a number of agents change their opinions in a sequence
after a critical sensor observation. It was found that the model
exhibits emergent behaviour and agents’ opinions converge
to the true state b dramatically more often when the sizes of

opinion cascades are distributed by a power law [Glinton et
al., 2010]. The trust levels are a key variable parameter which
regulate the dissemination process and thus, impact the dis-
tribution of sizes of opinion cascades. Unfortunately, it was
shown that it is infeasible in the general case to predict the
critical trust levels tcritical, at which the emergent behaviour
occurs, as it highly depend on properties of the network topol-
ogy, the distribution of priors of the agents’ and the proper-
ties of the sensors. If the team operates with trust levels lower
than the critical ti∀i ∈ A < tcritical, agents cannot form their
own opinions because they have insufficient neighbours to
get their updated belief to pass one of the confidence bounds.
Conversely, if ti > tcritical, agents instantly propagate the first,
possibly inaccurate opinion, and do not benefit from the pres-
ence of multiple sensors in the team.

2.2 Performance
In order to measure the performance of the team, we sim-
ulate a set of opinion dissemination rounds, M = {ml :
l ∈ 1 . . . |M |}, with randomly selected the new true state
bm ∈ B. Then we observe the agents’ final opinions, omi , at
the end of each round, m, which is limited by a number of
sensor observations and agents with sensors converge to the
correct opinion that is unlikely be changed any more. Thus,
the end of each round constitutes a certain deadline when the
current true state expires.

From its own perspective, a single agent i cannot deter-
mine when it has formed the correct opinion about the true
state bm. However, we assume that the common goal of the
team is to share opinions since in many real world scenarios it
is crucial for the agents’ activities. To measure this, we define
an agent’s awareness rate, hi, as the share of dissemination
rounds where the agent held an opinion rather than being un-
determined compared to the total number of rounds:

hi = |{m ∈M : omi 6= undeter.}| / |M | (4)

To measure an average accuracy of the agents’ opinions,
Glinton et al. [2010] proposed the reliability metric of the
team that shows the ratio between the number of dissemina-
tion rounds when the agents’ final opinions are correct versus
incorrect. Thus, it heavily penalises the team for dissemi-
nating incorrect opinions. Therefore, this metric maximises
even if a large share of the team does not form any opinion
(hi � 1 ∀i ∈ A). However, this contradicts our assumption,
and we propose a new reliability metric that, unlike the exist-
ing one, is maximised when most of the team forms the cor-
rect opinion. Formally, our reliability metric measures how
often an agent forms the correct opinion on average:

Rcorrect =
1

|A||M |
∑
i∈A
|{m ∈M : omi = bm}| (5)

Having introduced the model, we look next at algorithms
which optimise the reliability Rcorrect.

3 Autonomous Adaptive Tuning of Trust
Levels

As mentioned earlier, we cannot predict analytically the trust
levels that introduce the desired emergent behaviour into
complex communication networks. This limitation comes



from the high complexity of the problem where the number of
possible interactions between agents is combinatorial in the
size |A| of a large team and the range of trust levels (0.5, 1).

In this section, we present our Autonomous Adaptive Tun-
ing (AAT) algorithm, for improving the reliability Rcorrect of
a complex communication network by exploiting its emer-
gent behaviour. In contrast to the existing algorithm, DA-
COR, our solution does not introduce extra communication
and agent share only their opinions. Specifically, DACOR
implies that following a change of an agent’s opinion, all
its neighbours communicate on average d2 additional service
messages, where d is the expected number of neighbours. We
address this shortcoming by developing a new solution that
updates agents’ trust levels autonomously, relying on their
own observations of local information dynamics.

Specifically, AAT is built on our observation that the team’s
reliability dramatically increases when the trust levels are
minimally sufficient to disseminate opinions, and the agents’
awareness rates, hi, indicate on this settings when they are
slightly lower than the maximum, 1. This creates a condi-
tion where the team does not overreact to inaccurate opinions
and the agents share opinions in small groups before a large
cascade occurs. To reach this area of optimised parameters,
AAT gradually tunes a trust level of each agent individually
in three stages, described in the following sections. Firstly
each agent running AAT builds a set of candidate trust levels
to reduce the search space for the following stages. Then the
agent estimates the awareness rates of the candidate trust lev-
els after each dissemination round. Finally, the agent selects
a trust level to use in the following round, considering how
close its estimated awareness is to the target awareness rate.

3.1 Candidate Trust Levels
In this section, we analyse the dynamics and limit the search
space for each agent from the continuous interval ti ∈ [0.5, 1]
to the finite set of candidate trust levels. Since the number of
sensors is very small, we analyse the agents that inform their
beliefs only by their neighbours’ opinions. Each such agent
i ∈ A \ S sequentially receives opinions from its neighbours
and these opinions might be conflicting.

For example, Figure 1 illustrates the sample dynamics of
the agent’s belief, P ki , where the agent participated in at least
2 opinion cascades of conflicting opinions. During each step,
k, of its belief update, the agent has a number of opinions, uki ,
received from its neighbours that support belief bm = white,
and a number of received opinions, uki that support the oppo-
site belief bm = black. Following this, during the whole
dissemination round, m, there is some belief update step k
when an agent observes the strongest support in favour of one
of the conflicting opinions. We denote the ongoing support
as the difference between the received conflicting opinions,
uki − uki , and the strongest observed support during round m
as umi = maxk |uki − uki |.

When the agent observes the strongest support, its belief is
maximised or minimised and thus, it is most confident to form
its most accurate opinion given its local view. To form the
opinion when the strongest support is observed, the agent’s
belief should match one of 2 confidence bounds, P ki ∈ {1 −
σ, σ}. Since the agent’s trust level, ti influences the dynamic
of its belief, we can select such 2 optimal trust levels that
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Figure 1: The sample dynamics of an agent i’s belief with
marked steps when i changed its opinion. Starting from
its prior P ′i , i updates its belief with 4 neighbours’ opin-
ions that support ‘black’ after which i sequentially receives
11 opinions supporting ‘white’. The strongest support is
umi = |4− 11| = 7.

meet the described condition given a specific value of umi .
The number of received opinions that support one of the

conflicting beliefs, uki and uki , is limited to the total num-
ber of the neighbours, |Ni|. Following the definition of the
strongest support, umi is also limited by the number of agent’s
neighbours umi ≤ |Ni| , umi ∈ {1 . . . |Ni|}

Assume that the agents select its trust levels ti before the
dissemination round,m, and it is fixed till the end of round. If
this case the belief update rule (Eq. 3) returns the same result
regardless of the ordering of its update sequence. Thus, the
agent’s trust level is the only parameter that regulates the be-
lief position. If the agent can predict the value of the strongest
support, umi , that it will observe in the upcoming round, the
agent needs to consider only 2 trust levels to form the most
accurate opinion given its local view. Specifically, a trust
level t−i using which the agent’s belief reaches the lower con-
fidence bound P ki = 1− σ in umi belief update steps to form
its opinion oki = black when the strongest support is ob-
served; or t+i to reach the upper bound P ki = σ and to form
the opposite opinion. Since umi ∈ {1 . . . |Ni|}, we build the
corresponding sets of trust levels: Ti = T−i ∪ T

+
i = {tl−i :

l = 1 . . . |Ni|} ∪ {tl+i : l = 1 . . . |Ni|}. Here Ti is a set of
the candidate trust levels that the agent needs to consider in
order to select the best trust level and form the most accurate
opinion. Also, this is a complete set of distinct dynamics of
agent’s opinion formation.

We present Algorithm 1 that pre-calculates the candidate
trust levels, Ti = {tli : l = 1 . . . 2|Ni|}, and thus, heavily
reduces the search space from the continuous interval [0.5, 1]
to the finite set. Following this, we now present our algorithm
for selecting the best trust level out of the candidates.

Algorithm 1 Candidate Trust Levels
Function CANDIDATETRUSTLEVELS(P ′i , σ, |Ni|)
{Builds a vector of candidate trust levels}

1: P (t, u) =

{
P ′i if u = 0

tP (t,u-1)
(1−t)(1−P (t,u-1))+tP (t,u-1) otherwise

{recursive belief update function, where t is a trust level, u is a
number of updates (following Eq. 3)}

2: U ′ := {1, . . . , |Ni|} {the number of updates to consider}
3: T+

i := {tl+i : SOLVE
(
P (tl+i , ul) = σ

)
∀ul ∈ U ′}

4: T−i := {tl−i : SOLVE
(
P (1–tl−i , ul) = 1–σ

)
∀ul ∈ U ′}

5: Ti = T+
i ∪ T

−
i

6: return Ti



3.2 Estimation of the Awareness Rates
In this section we present AAT that selects for each agent the
best trust level to use from the candidates, Ti, and steers the
team into the area of optimised parameters of opinion shar-
ing when it becomes a large collaborative filter and its reli-
ability significantly improves. The approach is based on our
observation that the reliability, Rcorrect, is maximised when
the trust levels are minimally sufficient to disseminate opin-
ions in the team. In other words, AAT is based on the in-
tuition that to filter out inaccurate opinions, agents have to
gather as many neighbours’ opinions as possible before form-
ing their own opinion. However, if agents wait until all their
neighbours communicate their opinions, a deadlock results
where the opinion dissemination process stops. Therefore,
each agent must apply a minimal trust level to the received
opinions which guarantees that it actually forms its own opin-
ion given the available number of neighbours’ opinions, and
thus, propagates this opinion further. In terms of the model,
to maximise the reliability, Rcorrect each agent has to:
• form its opinion, and thus, reach a high level of its

awareness rate, hi∀i ∈ A, since the agents with unde-
termined opinions decrease the team’s reliability;
• form accurate opinion given its local view by crossing

one of the confidence bounds when the agent observes
the strongest support (following Section 3.1)

To meet these conditions, the agent has to use the minimal
trust level, tli, out of the candidates, Ti, that lead to an opinion
formation given the strongest support, umi , observed before
the agent influences its opinion on the neighbourhood.

In the area of maximised reliability the trust levels have
to be as low as possible to prevent overreacting to early and
possibly inaccurate opinions. The awareness rates indicate on
this when they are slightly lower than maximum, 1. However,
during some rounds the opinions might not disseminate on a
large scale and the awareness rates will suffer even further,
since the sensor readings are introduced randomly producing
randomness in opinion sharing dynamics. Therefore, to im-
prove the overall reliability, each agent i has to compromise
its own awareness rate, hi, and find the minimal trust level, tli
out of candidates Ti that delivers the target awareness rate,
hbest. Formally, each agent solves the optimisation problem:

ti = argmin
tli∈Ti

|hi(tli)− hbest| (6)

where hi(tli) is the awareness rate that the agent achieves us-
ing trust level tli. hbest has to be slightly lower than the max-
imum, 1, to indicate the moment when the team dynamics is
changing, and we analyse the impact of its value on the relia-
bility in the empirical evaluation (Section 4.1).

Given this intuition, in order to select the trust level, tli ∈
Ti, the agent needs to estimate its awareness rate, h(tli), that
would be achieved by using tli. Since the agents opinions are
highly interdependent, the choice of an individual agent even-
tually affects the dynamic of the whole team. By analysing
the process of the agents’ belief update, we propose the fol-
lowing approach to construct an estimator of the awareness
rate, ĥ(tli), for the candidate trust levels tli ∈ Ti based on the
observed local dynamics. Specifically, to estimate the aware-
ness rate, the agent needs to decide if its opinion could be
formed using a trust level, tli, that is distinct from its actually
used ti, and we identify two evidences that indicate this:

Algorithm 2 Estimation of the Awareness Rates
Procedure UPDATE(i)
{Revises the current trust level after each dissemination round}
1: if um

i = 0 then
2: return {no changes if new opinions did not arrive}
3: for l ∈ {1, . . . , 2|Ni|} do
4: if EVS(tli, ti,m) = True then
5: ĥm(tli) :=

m−1
m

ĥm-1(tli)+
1
m
{add 1 to the average}

6: else
7: ĥm(tli) :=

m−1
m

ĥm–1(tli) {else add 0}
8: ti := CHOOSET(i)

1. Consider the case that the agent used trust level ti in
round m and an opinion was formed (omi 6= undeter.).
According to the belief update function (Eq. 3) all higher
trust levels (tli ≥ ti) would have led to the more con-
fident belief, and thus, to opinion formation as well.
We formalise this evidence of opinion formation as a
boolean function that returns True if the agent would
have formed an opinion with a candidate trust level, tli:
EV1(tli, ti, o

m
i ) = (omi 6= undeter.) ∧ (tli ≥ ti) (7)

2. Otherwise, the opinion should have been formed when
the strongest observed support, umi , is larger than it is re-
quired for the agent’s belief updated with tli to cross the
nearest confidence bound, denoted as u(tli, P

′
i , σ). Ad-

ditionally, we exclude the current trust level, ti, which
can be more accurately judged by the first evidence:

EV2(tli, ti, u
m
i ) = (u(tli, P

′
i , σ) ≤ umi ) ∧ (tli 6= ti) (8)

Combining these evidences, we construct an indicator that
returns True if the agent might have formed an opinion in the
current round, m using trust level tli with actual trust level ti:

EVS(tli, ti,m) = EV1(tli, ti, o
m
i ) ∨ EV2(tli, ti, u

m
i ) (9)

Following the definition of the agents’ awareness rate (Eq. 4),
we formulate the empirical estimator of the awareness rate for
each trust level out of the candidates tli ∈ Ti after the number
of dissemination rounds |M |:

ĥ(tli) = |{m ∈M : EVS(tli, ti,m) = True}| / |M | (10)

Algorithm 2 describes the core procedure of AAT that is ex-
ecuted after each dissemination round. In lines 3-7, AAT up-
dates the estimates of the awareness rate for each of the candi-
date trust levels according to the procedure described above.
If no opinions were observed (umi = 0), the agent cannot
form its own opinion with any of the trust level, and thus this
case is limited by the condition on lines 1-2. Now, according
to optimisation problem the agent solves (Eq. 6), it has to
select the trust level (line 8) that delivers the awareness rate
closest to the target, hbest, considering the high interdepen-
dence between agents’ choices.

3.3 Strategies to Select a Trust Level
The problem of selecting the best trust level out of the can-
didates, accordingly their estimated awareness rates, resem-
bles the standard multiarmed bandit (MAB) model. In the
MAB problem, there is a machine with |Ti| arms (the candi-
date trust levels in our case), each of which delivers a reward



Algorithm 3 Hill-climbing strategy to select a trust level
Function CHOOSET(i, ε = 0.05)

1: Ti := 〈SORTASC(Ti)〉 {in order to use position indexes}
2: l := GETPOS(ti ∈ Ti)

3: if l < |Ti| and ĥm(tli) < hbest then
4: l := l + 1
5: else if l > 1 and ĥm(tl–1i ) > hbest + ε then
6: l := l − 1
7: return tli

(the awareness rate), that is independently drawn from an un-
known distribution, when the machine’s arm is pulled. Given
this, we can apply the following widely recognised MAB
strategies [Vermorel and Mohri, 2005] to select the trust level
out of the candidates:
• Greedy: A benchmark that selects the trust level, which

has the awareness rate closest to hbest.
• ε-greedy: Selects the trust level closest to the target

awareness rate with probability ε − 1, otherwise it se-
lects a random one (let the random factor is ε = 0.1).
• ε-N-greedy: The same as above but the random factor, ε

decays in time as (ε−1)/f(m)2 where f(m) is selected
such that it becomes insignificant after m > 150.
• Soft-max: Chooses each trust level with probability

exp(q(tli)/τ)∑|Ti|
v=1 exp(q(tvi )/τ)

, where q(tli) = |ĥm(tli) − hbest|, and

τ is the temperature that decays to 0 after m > 150.
The latter two strategies gradually decay their exploration
in time. Following our note regarding the high interdepen-
dence of agents’ opinions earlier, a trust level chosen by a sin-
gle agent eventually affects the dynamics of the whole team.
Thus, we expect the strategies with less dramatic changes in
agents’ dynamics to estimate awareness rate more accurately
and converge to the solution faster.

MAB strategies assume that the distribution of awareness
rates is unknown, however we note its shape can be estimated.
For the candidate trust levels, Ti, sorted in ascending order
the smaller trust level, t1i , requires more sequential updates
to cross one of the confidence bounds, while the larger tmax

i

requires less, and thus we expect h(t1i ) � h(tmax
i ). Conse-

quently, awareness rates are distributed as a hill with a peak
for the largest trust level. Therefore, we offer the additional
strategy that makes use of this observation:
• Hill-climbing: Select a trust level from the closest trust

levels to the currently used. So, if the awareness rate de-
livered by the currently used trust level, ti, is lower than
target hbest, the agent must increase the trust level to the
closest larger one. Conversely, if the closest lower trust
level is estimated to deliver an awareness rate higher
than hbest, the agent chooses to use it in the next round.

Algorithm 3 presents its definition with parameter ε that re-
duces the number of changes even further. We expect this
strategy to deliver the highest reliability, since it introduces
the least changes to the dynamics during the exploration.

4 Empirical Evaluation
To empirically evaluate the performance of AAT and the
existing DACOR, we consider a wide range of parame-
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Figure 2: (a) The reliability of a team of 1000 agents, and (b)
the average trust level achieved by AAT, both depend on the
target awareness rate hbest. Each data point is averaged over
the set of expected degrees.
ters in order to examine their adaptivity and scalability.
Specifically, we evaluate the reliability of teams of |A| ∈
{150, 300, 500, 750, 1000, 1500, 2000} agents on networks
with a variable expected degree, d ∈ {4, 6, 8, 10, 12}. We
consider the following network topologies widely used in the
literature: (a) a connected random network; (b) a scale-free
network with clustering factor pcluster = 0.7 [Holme and Kim,
2002]; (c) a small-world ring network with prewire = 0.12
of randomised connections. [Newman, 1999]. We intro-
duce new opinions through a small number of sensors (|S| =
0.05|A|with accuracy r = 0.55), randomly distributed across
the team. To simulate a gradual introduction of new opinions,
only 10% of sensors make new observations after the preced-
ing opinion cascade has stopped. Finally, all agents are ini-
tialised with the same confidence bound σ = 0.8, initial opin-
ion o0i = undeter., and individually assigned priors P ′i that
are drawn from a normal distribution N (µ = 0.5, s = 0.1)
within the range of the confidence bounds (1− σ, σ).

Before every round m we randomly choose the true state
bm ∈ B. Each round stops after 3000 sensors’ observations
and sequential opinion cascades. After this number of ob-
servations, opinions of the agents with sensors converge to
the true state and are unlikely to change it any further, and
thus, the dissemination process stops. The end of each round
constitutes a deadline when the current true state expires, and
agents reset their beliefs and opinions to the initial values.
AAT and DACOR tune the trust levels in the first 150 rounds,
then reliability is measured over the following 150 rounds

4.1 Selection of the Target Awareness Rate
We analyse the performance of our algorithm AAT based on
the hill-climbing strategy with a regard to its single parame-
ter – target awareness rate hbest. We support our discussion,
that hbest has to be slightly lower than 1 to help agents to find
the settings when the dynamics changes, and thus, to max-
imise the reliability. Figure 2 shows that the highest reliabil-
ity achieved when hbest = 0.9 regardless of the topological
properties, indicating on the adaptivity of AAT. The relia-
bility significantly drops for the higher values of hbest since
agents select much larger trust levels to form opinions out
of smaller number of observations. Thus, they become over-
confident and the whole team converges to the early opinion
without fusing it with later observations that might be more
accurate. Considering the results, in our further evaluation
we use hbest = 0.9 since all strategies use the same approach
to estimate the awareness rates.
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Figure 4: The reliability of a team with AAT, DACOR, and pre-tuned trust levels. Each network size is represented by 40
instances with variable expected degrees, the maximum size is limited by the large expenses of the pre-tuning process.
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Figure 3: The reliability of a team of 1000 agents depending
on the selection of strategy for AAT compared with DACOR.
Each data point is averaged over the set of expected degrees.

4.2 Comparison of AAT Strategies
We test our hypothesis about the impact of the dynamics of
different AAT strategies and choose the best one. Figure 3
presents the results with an additional comparison against
DACOR. The ε-greedy strategy exhibits the worst perfor-
mance since it introduces a large number of sudden changes
to the opinions dissemination dynamics. Thus, due to the
high interdependence in the team, AAT is not able to esti-
mate awareness rates accurately and converge to the solution.
Similar results are shown by the ε-N-greedy strategy with a
slight improvement since its randomness decays with time.
Despite its simplicity, the greedy strategy forces agents to
keep an already selected trust level for a longer period, and
with more stable dynamics the team converges to the better
solution. However, a large number of agents change their
trust levels simultaneously and thus, AAT fluctuates around
the optimised parameters. The soft-max strategy provides
better results by selecting the trust level with the awareness
rate closest to the target with a higher probability, that in-
troduces less sudden changes. And finally, the hill-climbing
strategy introduces the least changes, estimates the awareness
rates of the candidate trust levels accurately, and thus, exhibits
the highest reliability. This experiment shows that the latter 3
strategies outperform the results achieved by DACOR, and in
the following experiment we analyse this in wider settings.

4.3 Reliability of the System
Since the main objective of AAT is to improve the reliabil-
ity of a team by helping agents to form accurate opinions,
we benchmark its reliability against a team pre-tuned for the
highest performance and against DACOR (with parameters
uA = 10, γ = 0.001, β = 0.1 selected to maximise the re-
liability of a random network with d = 8). To pre-tune a

team, we perform a resource intensive empirical exploration
of each instance with fixed trust levels ti = tf ∀i ∈ A, where
tf ∈ (0.5, 1) with a step of 0.05 over |M | = 150 rounds. Then
we choose the trust level tbest at which the team exhibits the
highest reliability. Note, that this is not the optimal solution,
as it is infeasible to explore the whole domain where agents
may have different trust values. Still, this approximation ex-
hibits a high reliability of 0.9-0.97 and shows its level that
can be achieved by a trust level tuning. However, tbest varies
between different network instances since the area of opti-
mised parameters is very narrow. Therefore, to show that it
is hard to predict tbest, we provide the lower pre-tuned bound
that shows the reliability of the team with the average 〈tbest〉
for the networks of the same size and topology.

The results of the reliability benchmark are shown in Fig-
ure 4. As can be seen, AAT shows reliability close to the re-
sults of the pre-tuned teams and significantly outperforms the
existing solution, DACOR, for all network topologies. AAT
scales well, since it reaches the stable reliability around of
0.86-0.88 for teams larger than 1000 agents. However, it
declines as the team size becomes lower than 1000 agents,
since all approaches improve the reliability by reaching the
optimised settings when opinions are filtered on a team level,
and these settings are less distinct on smaller teams. Analysis
of the results showed that unlike adaptive AAT, DACOR is
highly dependent on its parameters which have to be individ-
ually tuned for specific domains. And finally, the low relia-
bility achieved by teams with 〈tbest〉 indicates a clear need for
an algorithm that can efficiently tune each team individually.

4.4 Communication and Computation Expenses
AAT is designed to improve the reliability without introduc-
ing additional communication over opinion sharing described
by the model. We compare the communication in Figure 5a
as a number of messages that agents exchange while the team
is tuned by AAT, DACOR, and the minimal number of mes-
sages required to share an opinion on a team scale in a single
cascade. The latter represents the minimal communication,
when agents share their opinions only once to the neighbour-
hood, and thus, communicate d|A| messages. The average
number of messages for a team with AAT is similar to the
minimal communication, since during some rounds a team
does not disseminate opinions on a large scale (as the result
of hbest < 1). Thus, AAT is communication efficient and fur-
ther reduction of the communication will harm the achieved
reliability.

Also, AAT requires radically less changes of the trust lev-
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Figure 5: (a) Number of messages and (b) Number of trust
level changes, for an agent per dissemination round. Mea-
surements are averaged across all instances used in Fig 4.

els than DACOR in the process of tuning. AAT updates a
trust level only once at the end of each round, while DACOR
updates an agent’s trust level if any of its neighbours has ob-
served new opinion. The results that represent computational
expenses, are shown in Figure 5b. Both expenses metrics con-
firms that AAT is a highly scalable solution.

4.5 Team with Indifferent Agents
Finally, AAT is robust and significantly improves the relia-
bility when a large number of the agents are indifferent and
do not participate in the optimisation process. To illustrate
this, we evaluate a team with a variable number of indiffer-
ent agents that are randomly distributed across the team with
trust levels that are not dynamically determined by AAT or
DACOR algorithms, but fixed and uniformly selected from
the range close to the critical trust level [0.55, 0.75]. The re-
sults in Figure 6 shows that AAT with up to 50% of indifferent
agents delivers higher reliability than can be achieved by us-
ing 〈tbest〉. This shows the direct benefit from deploying AAT
even on half of the agents in a team over the manual tuning
by predicting the critical trust level based on the analysis of a
number of similar teams. Similar results are obtained for the
other topologies and team sizes.

5 Conclusions
We developed a decentralised algorithm, AAT, which signif-
icantly improves the accuracy of agents’ opinions about the
true state of the common subject of interest, and thus, im-
proves the reliability of the team, in the settings where com-
munication is limited to the opinion sharing. AAT reaches
the parameters where a large team becomes a collaborative
filter when early and possibly inaccurate opinions are shared
amongst small groups to prevent overreacting, and only these
locally vetted opinions are disseminated on a large scale.

We showed that AAT significantly outperforms the existing
algorithm, DACOR, and delivers reliability close to the team
individually pre-tuned by the resource expensive empirical
exploration. AAT is the first solution that operates with the
minimal communication requirement and it is computation-
ally inexpensive, while DACOR requires a significant com-
munication overhead and considerably more update cycles.
We showed that AAT is scalable, adaptive and robust, and it
significantly improves the reliability of team where up to half
of the agents do not participate in the optimisation process.
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Figure 6: The reliability with indifferent agents averaged over
40 scale-free networks of 1000 agents with variable degree d.

Our future work in this area is to investigate the applica-
bility of our algorithm to the continuous settings of opinions
dissemination by relaxing the assumptions that information
expires after a certain deadline and agents have to reset their
opinions. Also, we plan to extend AAT with individual trust
levels for each neighbour based on learning their dynamics to
reduce the effect of the double counting fallacy.
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