
Bounded Decentralised Coordination over Multiple
Objectives

Francesco M. Delle Fave, Ruben Stranders, Alex Rogers & Nicholas R. Jennings
University Of Southampton

{fmdf08r,rs2,acr,nrj}@ecs.soton.ac.uk

ABSTRACT
We propose the bounded multi-objective max-sum algorithm
(B-MOMS), the first decentralised coordination algorithm
for multi-objective optimisation problems. B-MOMS ex-
tends the max-sum message-passing algorithm for decen-
tralised coordination to compute bounded approximate so-
lutions to multi-objective decentralised constraint optimi-
sation problems (MO-DCOPs). Specifically, we prove the
optimality of B-MOMS in acyclic constraint graphs, and de-
rive problem dependent bounds on its approximation ratio
when these graphs contain cycles. Furthermore, we empiri-
cally evaluate its performance on a multi-objective extension
of the canonical graph colouring problem. In so doing, we
demonstrate that, for the settings we consider, the approx-
imation ratio never exceeds 2, and is typically less than 1.5
for less-constrained graphs. Moreover, the runtime required
by B-MOMS on the problem instances we considered never
exceeds 30 minutes, even for maximally constrained graphs
with 100 agents. Thus, B-MOMS brings the problem of
multi-objective optimisation well within the boundaries of
the limited capabilities of embedded agents.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems

General Terms
Algorithms, Theory, Experimentation

Keywords
Coordination, Distributed Problem Solving

1. INTRODUCTION
Many real world problems involve the optimisation of multi-
ple, possibly conflicting, objectives. Examples of bi-objective
problems include the use of unmanned aerial vehicles (UAVs)
for searching for survivors, while simultaneously establishing
a wireless communication network between them [17], and
controlling the motion of mobile robots to minimise travel
distance while preventing collisions [14]. In both cases, in-
dependently maximising one objective results in detrimental

Cite as: Bounded Decentralised Coordination over Multiple Objectives,
F. M. Delle Fave, R. Stranders, A. Rogers and N.R. Jennings, Proc. of
10th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2011), Yolum, Tumer, Stone and Sonenberg (eds.),
May, 2–6, 2011, Taipei, Taiwan, pp. XXX–XXX.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

performance in terms of the other. Now, due to the poten-
tial life-critical nature of these problems, centralised control
of these UAVs or ground robots is not desirable, since it
creates a single point of failure. Consequently, the use of
multi-agent technology has been advocated to achieve reli-
able, robust and scalable control within these sensitive sce-
narios [7, 9]. Specifically, many decentralised constraint op-
timisation algorithms have been proposed to allow multiple
agents to coordinate their actions in an attempt to achieve
their collective goals [4, 5, 10, 13, 15].

However, whilst both multi-objective constraint optimisa-
tion and decentralised coordination has generated consider-
able interest, no decentralised multi-objective optimisation
algorithms have been proposed in previous work.

On the one hand, the field of decentralised optimisation
has focused exclusively on problems involving a single objec-
tive, which are often represented as decentralised constraint
optimisation problems (DCOPs). A number of algorithms
have been proposed for solving general DCOPs, which can
be divided in three broad classes. The first contains algo-
rithms that are designed to find optimal solutions, such as
ADOPT [13] and DPOP [15], but have a computational or
communication complexity that is exponential in the num-
ber of agents. The second is composed of algorithms, such as
the distributed stochastic algorithm (DSA) [5] or Maximum
Gain Message [10], designed for large multi-agent systems,
but which often converge to poor quality solutions. However,
there exists a third class of algorithms usually referred to as
Generalised Distributive Law (GDL) [1], which constitutes
a compromise between the extremes represented by the first
two classes, and can be used to compute good quality ap-
proximate solutions. In particular, one GDL algorithm, the
max-sum algorithm, has been shown to generate solutions
closer to the optimum than (for example) DSA, while being
robust against message loss and exhibiting a scalable com-
putational and communication cost [4]. An inherent short-
coming of the max-sum algorithm, however, is that it is not
guaranteed to converge on cyclic constraint graphs, in which
case it can perform arbitrarily poorly. This limits its appli-
cability in safety-critical domains. The bounded max-sum
algorithm, an extension to the standard max-sum algorithm,
addresses this shortcoming, by pruning the constraint graph
to a tree. In so doing, it is capable of providing performance
guarantees on the computed solutions [3].

On the other hand, research on multi-objective constraint
optimisation has yielded two extensions to well known single-
objective algorithms, such as bucket elimination and branch
and bound [16, 11], to solve general multi-objective optimi-
sation problems. However, such approaches are centralised,
and therefore lack the robustness required in the aforemen-

tioned scenarios. Moreover, since these algorithms exhibit
a computation cost that is exponential in the number of
agents, they are capable of solving only the smallest of prob-
lem instances. Another line of research has investigated ex-
tensions to standard DCOP algorithms for solving single-
objective DCOPs with resource constraints [2], such as a ca-
pacity constraints in power distribution networks [8]. How-
ever, these resource constraints are not expressive enough to
represent general multi-objective problems.
Thus, against this background, we identify a need for a

decentralised coordination algorithm that has scalable com-
putational and communication costs, and can provide good
quality solutions for problems involving multiple objectives.
To address this requirement, we propose the first decen-
tralised coordination algorithm for multi-objective optimisa-
tion problems; the bounded multi-objective max-sum algo-
rithm (B-MOMS). B-MOMS extends the bounded max-sum
algorithm to solve multi-objective DCOPs (MO-DCOPs),
a novel extension to the DCOP framework. These MO-
DCOPS are encoded into a bipartite factor graph, in which
vertices represent variables (owned by agents) and multi-
objective functions, and edges represent the dependencies
between the two. The B-MOMS algorithm then operates by
exchanging messages between the variables and functions
to compute approximate solutions to an MO-DCOP, whilst
providing quality guarantees.
In more detail, this paper makes the following contribu-

tions to the state of the art:

• We propose the MO-DCOP problem, a general formal-
ism for multi-objective coordination problems, which
generalises the well known DCOP framework to the
multi-objective setting.

• We develop B-MOMS, the first bounded decentralised
algorithm for solving multi-objective optimisation prob-
lems. The operation of B-MOMS consists of three
phases:

– The first extends the bounded max-sum algorithm
[3] to compute a cycle-free sub-graph of the multi-
objective factor graph. To achieve this, we gener-
alise the maximum spanning tree problem solved
by the previous algorithm to handle the vector
weights that we face in MO-DCOPs.

– The second generalises the key mathematical op-
erators required by max-sum to optimally solve
the multi-objective problem encoded in this cycle-
free factor graph.

– Since there might be multiple Pareto optimal as-
signments to the cycle-free problem, the third and
final phase enables agents to reach consensus on
which global assignment to choose.

• We prove B-MOMS is optimal in acyclic factor graphs,
and derive problem dependent approximation bounds
in general graphs that do contain cycles.

• We present an extensive empirical evaluation of B-
MOMS by benchmarking against a centralised optimal
algorithm on a multi-objective extension of the graph
colouring problem. We demonstrate that the approxi-
mation ratio never exceeds 2, even for extremely con-
strained problems (i.e. fully connected graphs), and

is less than 1.5 for graphs where constraints exists be-
tween 20% of all pairs of agents for 14 variables. More-
over, the results indicate that the runtime required by
B-MOMS never exceeds 30 minutes, even for maxi-
mally constrained graphs with 100 agents, positioning
it well within the confines of many real-life applica-
tions.

The remainder of this paper is organised as follows. In
Section 2 we discuss the theoretical background of B-MOMS.
In Section 3, we formalise the MO-DCOP framework. In
Section 4, we develop the algorithm, describing each of its
three phases, and describe its theoretical properties in Sec-
tion 5. Finally, we empirically evaluate B-MOMS in Section
6. Section 7 concludes.

2. PRELIMINARIES
In this section we review the theoretical background of our
algorithm. In particular, in Section 2.1, we introduce funda-
mental concepts related to multi-objective optimisation and
in Sections 2.2 and 2.3 we discuss the max-sum algorithm
and the bounded max-sum algorithm respectively.

2.1 Multi-Objective Optimisation
A multi-objective optimisation problem (MOOP) is defined
as the problem of simultaneously maximising k incommensu-
rable objective functions, defined over a set x = {x1, . . . , xM}
of M discrete variables, where each xj takes values in a dis-

crete domain Dxj = {d1j , . . . , d
|Dxj

|
j }. Thus, a solution to

a MOOP is an assignment a∗ = {(x1 = d
(1)
1), . . . , (xM =

d
(M)
M)} of values to variables, such that:

a∗ = argmax
a∈Dx

U(x) = [U1(x), . . . , Uk(x)]T (1)

where Dx = ×M
j=1Dxj is the domain of variables x. Here,

each objective function U i can be defined over a subset
xi ⊆ x of the variables of the problem. However, for ease
of exposition, we assume each function is defined over the
same set of variables.

Now, since the functions are incommensurable, it is pos-
sible that multiple assignments satisfy Equation 1. For ex-
ample, consider three assignments a1, a2 and a3, such that
U(a1) = [4, 5], U(a2) = [4, 3], and U(a3) = [6, 3]. Clearly
we have that [4, 5] and [6, 3] are larger than [4, 3]. How-
ever, [4, 5] and [6, 3] are not comparable. Thus, a2 does not
satisfy Equation 1. Indeed, Equation 1 involves the opti-
misation of sets of partially-ordered assignments. Thus, to
characterise the optimal solutions of a multi-objective opti-
misation problem, we use the well known concept of Pareto
optimality :

Definition 1 (Pareto Optimality [12]). An assign-
ment a∗ ∈ Dx is Pareto optimal iff there does not exist an-
other assignment a ∈ Dx, such that U(a) ≥ U(a∗), and
U i(a) > U i(a∗) for at least one objective function.

The utility vector U(a∗) corresponding to a Pareto optimal
assignment a∗ is referred to as a non-dominated vector. We
define the notion of non-dominance as follows:

Definition 2 (Non-dominance). A vector U(a∗) ∈
Dx is non-dominated iff there does not exist an assign-
ment a ∈ Dx, such that U(a) ≥ U(a∗), with at least one
U i(a) > U i(a∗). Otherwise, U(a∗) is said to be dominated.

Thus, since a multi-objective problem involves the optimi-
sation over partially ordered assignments, its solution is a
set of Pareto optimal assignments. In the remainder of this
paper, we will refer to the set of Pareto optimal assignments
as PO.

2.2 The Max-Sum Algorithm
The max-sum algorithm is a decentralised message-passing
optimisation algorithm belonging to the generalised distribu-
tive law (GDL) framework [1]. GDL algorithms exploit the
factorisability of many optimisation problems, to solve them
in an effective and efficient manner. Particularly, such prob-
lems are characterised as optimisation problems where the
valuation algebra of the global constraint function is a com-
mutative semi-ring (i.e. where the distributive law holds).
All standard DCOP problems exhibit this characteristic [4].
Now, the most general characterisation of a DCOP in-

volves M agents, each controlling a single discrete variable
xj , j ∈ [1,M]. Constraints between agents are encoded as
functions Ui(xi) (i ∈ [1, N]) over these variables. The scope
xi ⊆ x of constraint function Ui contains the variables of the
agents over which the constraint is defined. The aim of the
coordination problem is then to choose variable assignments
that maximise the sum of the constraint functions:

U(x) =

N∑
i=1

Ui(xi) (2)

In order to use the max-sum algorithm the problem is en-
coded as a special bipartite graph called a factor graph, in
which vertices represent variables and functions, and edges
the dependencies between them.
Max-sum defines two types of messages that are exchanged

between variables and functions:

From variable xj to function Ui:

qj→i(xj) =
∑

k∈M(j)\i

rk→j(xj) (3)

where M(j) represents the set of indices of the func-
tions connected to variable xj (i.e. the functions in
which xj occurs as an argument).

From function Ui to variable xj:

ri→j(xj) = max
xi\xj

(
Ui(xi) +

∑
k∈N(i)\j

qk→i(xk)

)
(4)

where N(i) represents the set of indices of the variables
connected to function Ui.

Note that both qj→i(xj) and ri→j(xj) are scalar functions
of variable xj . When the factor graph is acyclic, these mes-
sages represent the maximum aggregate utility possible over
the respective components of the graph formed by removing
the dependency between Ui and xj , for each value d ∈ Dxj

in the domain of variable xj . Thus, in this case, the marginal
function of each variable is calculated by:

zj(xj) =
∑

i∈M(j)

ri→j(xj) = argmax
x\xj

N∑
i=1

Ui(xi) (5)

after which the optimal assignment of xj is found by:

aj = argmax
xj

zj(xj)

2.3 The Bounded Max-Sum Algorithm
When the factor graph is cyclic, the straightforward applica-
tion of max-sum is not guaranteed to converge. However, by
pruning edges such that an acyclic sub-graph of the factor
graph is obtained, a bounded approximation can be derived
[3]. More specifically, here, the goal is to compute a variable
assignment ã in the acyclic factor graph, such that:

V ∗ =

N∑
i=1

Ui(a
∗
i) ≤ ρ

N∑
i=1

Ui(ãi) = ρṼ

where a∗ is the optimal solution of the cyclic factor graph,
and ρ is the approximation ratio. To ensure this approxima-
tion ratio is as small as possible, the algorithm prunes those
edges that have the least impact on solution quality. The
impact of an edge between xj and Ui is defined as its weight
wij , which is computed by:

wij = max
xi\xj

[
max
xj

Ui(xi)−min
xj

Ui(xi)

]
(6)

Once all the weights are computed, the GHS algorithm [6]
is used to compute a maximum spanning tree of the factor
graph in a decentralised fashion. The newly obtained acyclic
factor graph is then used in the second phase, in which the
max-sum algorithm is used to compute ã, which is the opti-
mal variable assignment to the modified problem:

Ṽm =
∑
i

min
xc
i

Ui(ãi)

where xc
i is the set of variables that were eliminated from

the scope of function Ui, corresponding to the edges that
were pruned from the factor graph.

The approximation ratio ρ is now given by:

ρ = 1 + (Ṽm +W − Ṽ)/Ṽ (7)

where W is the sum of the weights of the pruned edges.
Thus, an upper bound on the optimal solution can be com-
puted as follows:

Ṽm +W ≥ V ∗

3. MO-DCOP FORMALISATION
We formalise the general problem by extending the DCOP
framework to the setting of multiple objective functions.
More formally, we consider the multi-objective DCOP (MO-
DCOP) problem, which involves the simultaneous optimisa-
tion of k DCOPs, where each DCOP is defined as in Section
2.2. Specifically, we consider the problem of maximising the
following vector of objective functions:

U(x) =
[
U1(x), . . . , Uk(x)

]T
(8)

Since each component of U(x) is a DCOP, this global ob-
jective functions is decomposable into N factors, each of
which is a multi-objective constraint function Ui:

U(x) =

M∑
i=1

Ui(xi)

where, again, each xi ⊆ x is the subset of variables repre-
senting the scope of multi-objective constraint function Ui,
which are defined as:

Ui(xi) =
[
U1

i (xi), . . . , U
k
i (xi)

]T

Figure 1: An example of a multi-objective factor
graph, involving three variables, three objectives
and three contraint functions.

Note that, for ease of exposition, we assume that all the
local constraint functions Uk

i are defined over the same set
of variables xi. However, this is not an essential requirement
for the application of our algorithm.
Within this setting, the different solutions of a MO-DCOP

are characterised using the solution concepts of Pareto op-
timality and non-dominance introduced in Section 2. Fol-
lowing these definitions, the solutions of a MO-DCOP are
characterised as a set of Pareto optimal assignments PO cor-
responding to a set of non-dominated utilities vectors ND.
Note that

∏M
i=1 |Di| is an upper bound of the number of

possible solutions, which is equal to the size of the Carte-
sian product of the domains of all variables.
Finally, we encode the MO-DCOP as a multi-objective

factor graph by representing each variable xi of the MO-
DCOP as a variable node, while each function node now
represents a vector function Ui. The following example il-
lustrates such a multi-objective factor graph.

Example 1. Consider the factor graph in Figure 1, with
three variables x1, x2, and x3, which are controlled by agents
A1, A2, and A3. There are three constraints between the
agents, represented by functions U1, U2, and U3, each de-
fined over three objectives U1, U2, and U3.

4. THE B-MOMS ALGORITHM
In this section we present the bounded multi-objective max-
sum (B-MOMS) algorithm. B-MOMS extends the max-sum
algorithm to compute solutions to MO-DCOPs. In detail,
our algorithm proceeds in three phases:

• The bounding (B) phase, which extends the bounded
max-sum algorithm discussed in Section 2.3, in order
to provide quality guarantees. To achieve this, we gen-
eralise the maximum spanning tree algorithm to vector
weights.

• The max-sum (MS) phase, during which the agents
coordinate to find the Pareto optimal set of solutions
to the cycle-free factor graph computed in the first
phase. This requires a redefinition of the two key op-
erations required by the max-sum algorithm (addition
and marginal maximisation) for multiple objectives.

• The value-propagation (V P) phase, in which agents
select a consistent variable assignment. This extends
the standard V P phase [15] to the case where multiple
non-commensurable alternatives exist.

In what follows, we discuss each phase in more detail.

4.1 The Bounding Phase
This phase builds upon the bounded max-sum algorithm
described in Section 2.3 by extending the edge weights wij

to the multi-objective vector weights. To this end, we first
compute the impact of each variable xj in the scope of each
local multi-objective function Ui over all k objectives:

wij =
[
w1

ij , . . . , w
k
ij

]T
Moreover, we define each scalar weight wo

ij (1 ≤ o ≤ k) as
in the single-objective case:

wo
ij = max

xi\xj

[
max
xj

Uo
i (xi)−min

xj

Uo
i (xi)

]
Since the problem of finding a maximum spanning tree is

defined on instances with scalar edge weights, it is necessary
to rank the vector weights. This procedure must ensure that
the resulting ordering favours deletion of dominated vectors
over non-dominated ones. One way of doing this is to assign
a scalar weight wij to each vector wij , which is proportional
to the number of edge weights it dominates. More formally:

wij = −|{wmn | wmn > wij , (i, j) 6= (m,n)}|

Thus, using this scalarisation, non-dominated weight vec-
tors are assigned a value of 0, vectors dominated by a single
elements are assigned a value of −1, and so on. With these
scalar edge weights, the GHS algorithm can be used to com-
pute a maximum spanning tree as discussed in Section 2.3.

4.2 The Max-Sum Phase
The second phase executes max-sum on the acyclic factor
graph resulting from the previous phase. In order to apply
max-sum to the multi-objective setting, however, the mes-
sages exchanged between functions and variables (Equations
3 and 4) need to be generalised to vectors of constraint func-
tions.

Recall from Section 2.2 that, if the factor graph is acyclic,
the messages r and q exchanged between Ui and xj represent
the maximum aggregate utility over the two components of
the graph obtained by removing the dependency between Ui

and xj . The same holds in the multi-objective case. How-
ever, instead of qj→i(xj) and ri→j(xj) being scalar functions
of xj , these messages now map the domain of xj to a set of
utility vectors. To see why this is true, note that in the
multi-objective domain, maximum utility is now defined in
terms of the dominance relation from Definition 2. Since
this relation induces a partial ordering, more than one such
maximum might exist. To illustrate this, consider the fol-
lowing example:

Example 2. Suppose the following message ri→j(xj) is
sent by function Ui to variable xj with domain Dj = {Red,
Green,Blue}:

ri→j(xj) =

{ {[0, 0, 0]} if xj = Red
{[0, 1, 0]} if xj = Green
{[−1, 2,−1], [2, 1,−1]} if xj = Blue

This message conveys the fact that, if xj is assigned the
value Red, the maximum possible utility obtained within the
sub-graph connected to Ui after removing the dependency on
xj is equal to [0, 0, 0]. Similarly, if xj = Blue, there are two
incomparable maxima (since neither dominates the other),
namely [−1, 2,−1] and [2, 1,−1].

To compute these messages, the two key mathematical
operators required by max-sum—the addition of two vector
functions (Equations 3 and 4) and the marginal maximisa-
tion with respect to a single variable (maxxi\xj

in Equation

4)— need to be defined for this domain. These operators
were previously defined in the context of the multi-objective
bucket elimination algorithm [16]. Here, however, we rede-
fine these to compute the messages exchanged in the max-
sum algorithm.
In more detail, to add two functions f and g defined over

scope x:

(f + g)(x) = ND({v +w|v ∈ f(x);w ∈ g(x)})

where function ND(A) filters out the dominated vectors
from input set A. Using the + operator we can compute
the sum of the messages r (which are univariate functions
of xj) in Equation 3, as well as the addition of multi-variate
function Uj to the sum of univariate functions of different
variables xk in Equation 4.
The second operator, marginal maximisation (maxxi\xj

),

takes as input a multi-variate vector function f(xi) and out-
puts a function f ′(xj):

f ′(xj = d) = ND

 ∪
d∈Dxi\xj

f({xi \ xj} = d, xj = d)

where Dxi\xj

is the Cartesian product of the domains of

variables xi \ xj .
At the end of the max-sum phase, each variable xj com-

putes its marginal function zj (Equation 5) to obtain a set of
Pareto optimal assignments A∗

j . Since there might be multi-
ple optimal assignments, agents need to reach consensus on
which global assignment to choose. Thus, in what follows,
we define a value-propagation phase where the agents jointly
choose a Pareto optimal solution among the ones computed
by the max-sum phase.

4.3 The Value-Propagation Phase
The third and final phase, value-propagation, again operates
on the cycle-free factor graph computed by the bounding
approach. In this phase, variables and function nodes in
this factor graph coordinate to select a consistent variable
assignment.
Now, at the end of the MS phase, each variable computes

the set A∗
j of marginal Pareto optimal variable assignments

for xj , which is obtained by maximising over the marginal
function zj :

A∗
j = argmax

xj

zj(xj)

If, for any variable xj , |A∗
j | > 1, then there exists more

than a single global optimal assignment in the acyclic factor

graph: |P̃O| > 1. If this is the case, a variable can se-
lect an assignment a∗

j ∈ A∗
j at random, or one that satisfies

some (logical) condition C. For example, a∗
j might be chosen

such that objective 1 is maximised, subject to objective 2
being at least 4, or more formally, a∗

j ∈ A∗
j and max zj(a

∗
j)1,

subject to zj(a
∗
j)2 ≥ 4. To select an assignment that satis-

fies this condition, the value-propagation phase proceeds by
passing messages between the variables and functions in the
acyclic factor graph, and is thus fully decentralised. First,
the variable xr with the lowest index is chosen as the root
of the tree, and is responsible for initiating the value prop-
agation phase by selecting a Pareto optimal assignment a∗

r

that satisfies C. The variable then sends value-propagation
messages (xr = a∗

r) to all the function nodes to which the
variable is connected.

The behaviour of all the other nodes in the graph will then
depend on their type. More specifically:

Function nodes: Upon receiving a message (xj = a∗
j) from

variable xj , multi-objective constraint functionUi com-
putes the set A∗ of local Pareto optimal assignments
for variables xi \ xj , conditioned on xj = a∗

j :

A∗ =

{
a | a ∈ Dxi\xj

, g(a) ∈ ND
(∪
a∈Dxi\xj

g(a)
)}

where g(a) is defined as:

g(a) = Ui({xi \ xj} = a, xj = aj) +
∑

k∈N(i)\j

qk→i(ak)

After computing set A, value propagation selects a
Pareto optimal assignment a∗ ∈ A that satisfies con-
dition C and sends the message (xk = a∗

k) to every
variable xk (k 6= j), where a∗

k is the element of a∗

corresponding to xk.

Variable nodes: For each non-root variable xj , once it re-
ceives a message (xj = a∗

j) from a function Ui, it sets
its value to a∗

j and propagates the message (xj = a∗
j)

to all the function nodes Uk, k 6= i.

Note that, during value propagation, a single message is sent
across each link in the factor graph. Thus, the algorithm
terminates once each non-root variable has received a value-
propagation message.

5. THEORETICAL ANALYSIS
We now discuss the theoretical properties of the B-MOMS
algorithm.

5.1 Optimality of the MS Phase
The first property concerns the performance of the max-
sum phase of the B-MOMS. Specifically, we show that the
following theorem holds:

Theorem 1. The max-sum phase (MS) computes the en-

tire set of Pareto optimal solutions P̃O of the acyclic factor
graph that is obtained by pruning edges during the bounding
(B) phase of the algorithm.

Proof. The proof consists of two steps. Firstly, the val-
uation algebra defined by the + and max operators dis-
cussed in Section 4.2, together with the co-domain of the
global multi-objective constraint function U (Equation 8),
is a commutative semi-ring [16]. Secondly, any GDL al-
gorithm optimally solves problems whose valuation algebra
is a commutative semi-ring, whenever the underlying con-
straint graph is acyclic [1]. Thus, since the second phase of
B-MOMS is a GDL algorithm, the result holds.

Now, while solutions P̃O are Pareto optimal in the acyclic
sub-graph, they are not necessarily (or likely) Pareto optimal
in the original factor graph. However, using Theorem 1, we
can derive bounds on the quality of these solutions in the
original factor graph.

5.2 Bounded Approximation
To derive these bounds, we follow a procedure similar to
that of the bounded max-sum algorithm (Section 2.3). First,
we define vector W = [W 1, . . . ,W k] as the sum of vector
weightswij of the edges between Uj and xi that were pruned
in the bounding phase to obtain an acyclic graph (Section
4.1). Furthermore, to characterise the upper bound com-
puted by B-MOMS, we first define the concept of utopia
point :

Definition 3 (Utopia Point [12]). The utopia point
V∗ of a multi-objective optimisation problem characterised

by objective function U(x) =
[
U1(x), . . . , Uk(x)

]T
is given

by:

V∗ =
[
max

x
U1(x), . . . ,max

x
Uk(x)

]
Put differently, the utopia point is the vector of values re-

sulting from optimising each k DCOPs independently. Clearly,
given any Pareto optimal assignment a∗ ∈ PO, U(a∗) ≤ V∗

holds for any MO-DCOP. Thus, the utopia point is an up-
per bound of the value of a Pareto optimal solution of a
MO-DCOP. Given these concepts we can state the following
theorem:

Theorem 2. Given an arbitrary MO-DCOP, for any as-

signment ã ∈ P̃O computed by B-MOMS, the following
bound holds:

U(ã) +W ≥ V∗ (9)

Proof. The theorem follows directly by the fact that we
extend the bounded max-sum algorithm for single objective
DCOPs to the case of multi-objective problems. In more
detail, for each objective o (1 ≤ o ≤ k) of an MO-DCOP, by
using the approach defined in [3], it is easy to see that the
following bound holds:

Uo(ã) +W o ≥ max
x

Uo(x)

thus concluding the proof.

Similarly, we define the problem dependent approxima-
tion ratio ρ = [ρ1, . . . , ρk] of the solutions computed by B-
MOMS, where each ρi is given by Equation 7.

5.3 Complexity
Finally, we derive the computation and communication com-
plexity of B-MOMS using properties inherited from the max-
sum algorithm. Now, since B-MOMS exploits the factoris-
ability of the problems it is solving, the scope of each con-
straint function Ui(xi) contains only the variables on which
the constraint is defined. Therefore, computing message
ri→j from function Ui to variable xj (Equation 4) requires

O(|Dmax||xi|) evaluations of function Ui, where Dmax is the
largest domain among variables x. Hence, the computation
is exponential only in the number of variables in the scope
of Ui, not the total number of variables.
Furthermore, since in the worst case every variable as-

signment of x is Pareto optimal, after a certain (but fi-
nite) number have been exchanged, these messages contain
O(k × |Dmax|M+1) values: |Dmax| sets of vectors (one for
each value in the variable’s domain), each containing at most
DM

max non-dominated vectors of size k.

6. EMPIRICAL EVALUATION
Since B-MOMS is not an optimal algorithm, empirical eval-
uation is required to ascertain the quality of the solutions
it computes. To this end, in this section we benchmark the
performance of B-MOMS against an optimal algorithm. In
the remainder of this section, we present a multi-objective
extension to the canonical graph colouring problem used in
our experiments, detail the experimental setup, and discuss
the results.

6.1 Multi-Objective Graph Colouring
In order to evaluate the performance of our algorithm we
consider a multi-objective extension of the graph-colouring
problem, which is a well known benchmark problem in the
DCOP literature [4]. In this multi-objective graph colouring
problem, each agent Aj owns a single variable xj , taking
values in the domain Dj = {Red,Green,Blue}. Within
this setting, the agents’ goals is to maximise the following
multi-objective function:

U(x) =
[
U1(x), U2(x), U3(x)

]T
(10)

where U1, U2, U3 are the sum of bi-variate constraint func-
tions U1

i (xj , xk), U2
i (xj , xk), U3

i (xj , xk) that exist among
the variables x. These three types of constraint functions
are defined as follows:

Chromatic Difference: This objective function represents
the common graph colouring conflict function:

U1
i (xj , xk) =

{
0 xj 6= xk

−1 xj = xk
(11)

Chromatic Ordering: This objective function imposes an
ordering among the colours: Red = 1, Green = 2, and
Blue = 3. Specifically, given two variables xj and xk

where j < k, the variable with the higher index should
have a higher ranked colour:

U2
i (xj , xk) =

{
0 if j < k and xj < xk

−1 otherwise
(12)

Chromatic Distance: This objective is similar to the chro-
matic ordering. However, it considers the distance be-
tween the colours of different variables. In more de-
tail, given two variables xj and xk, the distance of the
colours between the two variable should equal one:

U3
i (xj , xk) =

{
0 if |xj − xk| = 1
−1 otherwise

(13)

Thus, given an arbitrary graph G = (V,E), we construct a
factor graph as follows. Each vertex is represented as a vari-
able x. Furthermore, for each edge (v, v′) the factor graph
contains a three-objective constraint function Ui(xj , xk) =
[U1

i (xj , xk), U
2
i (xj , xk), U

3
i (xj , xk)]

T where xj and xk are the
variables corresponding to vertices v and v′.

6.2 Experimental Setup
We analyse the performance of B-MOMS by executing it
on several instances of the multi-objective graph colouring
problem defined previously. Specifically, we randomly gen-
erate connected graphs G = (V,E) with a varying num-
ber M = |V | of vertices, and varying graph density δ ∈

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

δ

||ρ
||

M=8
M=10
M=12
M=14

(a) Approximation ratio ||ρ||

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

δ

D
is

ta
nc

e

M=8
M=10
M=12
M=14

(b) Minimum distance of computed so-
lutions to a Pareto optimal solution

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

δ

Fr
ac

tio
n

Pa
re

to
 O

pt
im

al

M=8
M=10
M=12
M=14

(c) Fraction nPO of Pareto optimal so-
lutions found

Figure 2: Empirical results for M ≤ 14. Errorbars indicate the standard error of the mean.

[0, 1]. This latter parameter defines the constrainedness of
the problem by controlling the number of edges; when δ = 0
the number of edges |E| = M − 1, and the resulting graph
G is a tree. Conversely, when δ = 1, G is a complete graph,
and |E| = 1

2
M(M − 1).

We generated problem instances with M = {8, 10, 12, 14,
20, 40, 60, 80, 100} and δ = {0.0, 0.1, . . . , 1.0}. Moreover, for
each combination of values for M and δ we ran B-MOMS
120 times to achieve statistical significance. We measure the
performance of B-MOMS using the following four metrics:

1. The runtime (in milliseconds) required by B-MOMS to
compute the set of solutions.

2. The average approximation ratio of the solutions P̃O
computed by B-MOMS. More specifically, we defined
this as the norm of the approximation ratio vector ||ρ||
defined in Section 5.2.

3. The minimum Euclidean distance between solutions
a ∈ P̃O computed by B-MOMS and an optimal solu-
tion a∗ ∈ PO. More formally, we calculate this dis-
tance as follows:

d(a) =
www min

a∗∈PO

[
U(a)−U(a∗)

]www
4. Finally, we measure the fraction Pareto optimal solu-

tions found by B-MOMS:

nPO =
|P̃O ∩PO|

|PO|

Note that metrics 2 and 3 aggregate the objectives by
using the notions of norm and Euclidean distance, which
implies commensurability of the objectives. However, these
metrics have been widely used in multi-objective literature
[18]. Moreover, metrics 3 and 4 require the availability of
the set of Pareto optimal solutions PO. To compute these,
we used a centralised brute-force optimal algorithm. This
optimal algorithm exhaustively enumerates the Cartesian
product of the domains of x, and thus, has a computational
complexity that is exponential in the number of variables.
As a result, we do not report metrics 3 and 4 for M > 14,
since we were unable to run a sufficient number of experi-
ments to obtain statistically significant results. However, we
do report metrics 1 and 2 for M up to 100.

6.3 Results and Discussion
For M ≤ 14, results are shown in Figure 2. First of all, all
three plots confirm that the algorithm is optimal for acyclic
graphs (δ = 0), as proved by Theorem 1. Moreover, by
increasing the number of constraints of the problem (i.e.
by increasing δ), we can observe that the performance of
B-MOMS degrades gracefully in terms of the approxima-
tion ratio, distance, as well as the fraction of optimal solu-
tions found. Moreover, the approximation ratio never ex-
ceeds 2 (i.e. the value of the computed solution is greater
than half of that of the optimal solution) even for extremely
constrained problems, and is close to the value of 1.27 re-
ported for the single-objective graph colouring problem by
the single-objective bounded max-sum algorithm [3] when
each variable is involved in three constraints (corresponding
to δ = 0.3 for M = 14). Most importantly, for relatively
sparse graphs (δ ≈ 0.2), which are often found in real-life
multi-agent applications, B-MOMS recovers roughly 50% of
the optimal solutions for M = 14.

Figures 3(a) and 3(b) report the approximation ratio and
the runtime for larger problem instances. Specifically, Fig-
ure 3(a) clearly shows that, even for large instances, the
approximation ratio again never exceeds 2, demonstrating
the effectiveness of the bounding approach. Furthermore,
3(b) gives strong empirical evidence of the practical appli-
cability of the algorithm. Despite the exponential relation
between the number of variables and the time required by
B-MOMS1, for M = 100 and a maximally constrained prob-
lem, this time does not exceed 30 minutes. Moreover, it is
important to note that these experiments were run on a
single processor, while the computational load in a multi-
agent system is shared among multiple computational en-
tities. This brings B-MOMS well within the realm of the
limited computational capacities of embedded agents found
in many real-life applications.

7. CONCLUSIONS
In this paper, we proposed the bounded multi-objective max-
sum algorithm (B-MOMS), the first decentralised coordi-
nation algorithm for multi-objective optimisation problems.
B-MOMS extends the bounded max-sum algorithm for de-
centralised coordination [3] to compute bounded approxi-

1This is partially due to our implementation of the value-
propagation phase, which for the purpose of these experi-
ments, recovers an exponential number of (approximately)
Pareto optimal solutions, instead of just a single one.

0 20 40 60 80 100
1.85

1.9

1.95

2

M

||ρ
||

δ=0.1
δ=0.5
δ=1.0

(a) The approximation ratio ||ρ|| for
varying number of vertices

0 20 40 60 80 100
10

2

10
3

10
4

10
5

10
6

M

R
un

tim
e

(m
se

c.
)

δ=0.0
δ=0.5
δ=1.0

(b) The runtime for varying number of
vertices

Figure 3: Empirical results for 10 ≤ M ≤ 100. Error-
bars indicate the standard error of the mean.

mate solutions to multi-objective DCOPs (MO-DCOPs), a
novel extension to the DCOP framework. It consists of three
phases. The first phase extends the bounded max-sum al-
gorithm developed for max-sum [3] to compute a cycle-free
sub-graph of the multi-objective factor graph, which involves
a generalisation of the maximum spanning tree problem to
vector weights. The second phase generalises the key math-
ematical operators required by max-sum to optimally solve
the multi-objective problem encoded in this cycle-free factor
graph. Since there might be multiple Pareto optimal assign-
ments to the cycle-free problem, the third and final phase
enables agents to reach consensus on which global assign-
ment to choose. We proved the optimality of B-MOMS in
acyclic constraint graphs, and derived bounds on the approx-
imation ratio. Furthermore, benchmarked B-MOMS against
an optimal centralised algorithm on a multi-objective ex-
tension of the graph colouring problem. We demonstrate
that the approximation ratio never exceeds 2, and is typ-
ically less than 1.5 for graphs in which dependencies exist
between 20% of all pairs of agents. Moreover, the runtime
required by B-MOMS never exceeds 30 minutes, even for
maximally constrained graphs with 100 agents, positioning
it well within the confines of real-life applications.
For future work, we intend to apply our approach on chal-

lenging real-world problems, such as the coordination of mul-
tiple mobile sensors, and power distribution networks [8].
Moreover, we would like to extend B-MOMS to the setting
where there exist uncertainty about the constraint functions.
This is a non-trivial extension, since it requires the exchange
of vectors of probability distributions, instead of scalars, and
a further generalisation of the two key mathematical opera-
tors required by max-sum.

8. ACKNOWLEDGMENTS
The work reported in this paper was funded as part of the
ALADDIN (Autonomous Learning Agents for Decentralised
Data and Information Systems) Project and is jointly funded
by a BAE Systems and EPSRC (Engineering and Physical
Research Council) strategic partnership (EP/C548051/1),
and also by the Systems Engineering for Autonomous Sys-
tems (SEAS) Defence Technology Centre established by the
UK Ministry of Defence.

9. REFERENCES
[1] S. M. Aji and R. J. McEliece. The Generalized Distributive

Law. IEEE Transactions on Information Theory,
46(2):325–343, 2000.

[2] E. Bowring, M. Tambe, and M. Yokoo. Multiply-constrained
distributed constraint optimization. In Proc. of the 5th Int.
Conf. on Autonomous Agents and Multiagent Systems, pages
1413–1420, 2006.

[3] A. Farinelli, A. Rogers, and N.R. Jennings. Bounded
approximate decentralised coordination using the max-sum
algorithm. In IJCAI-09 Workshop on Distributed Constraint
Reasoning, pages 46–59, 2009.

[4] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings.
Decentralised coordination of low-power embedded devices
using the max sum algorithm. In Proc. of the 7th Int. Conf.
on Autonomous Agents and Multi-Agent Systems, pages
639–646, 2008.

[5] S. Fitzpatrick and L. Meertens. Distributed coordination
through anarchic optimization. In Victor Lesser, Charles L.
Ortiz, Jr., and Milind Tambe, editors, Distributed Sensor
Networks, chapter 11, pages 257–295. Kluwer Academic
Publishers, 2003.

[6] R.G. Gallager, P.A. Humblet, and P.M. Spira. A distributed
algorithm for minimum-weight spanning trees. In ACM
Transactions on Programming Languages and Systems,
volume 5, pages 66–77, 1983.

[7] N. R. Jennings. An agent-based approach for building complex
software systems. Communications of the ACM, 44(4):35–41,
2001.

[8] A. Kumar, B. Faltings, and A. Petcu. Distributed constraint
optimisation with structured resource constraints. In Proc. of
the 8th Int. Conf. on Autonomous Agents and Multi-Agents
Systems, pages 923–930, 2009.

[9] V. Lesser, C. L. Ortiz, and M. Tambe. Distributed Sensor
Networks, A Multiagent Perspective. Kluwer Academic
Publishers, 2003.

[10] R. J. Maheswaran, J. Pearce, and M. Tambe. A family of
graphical-game-based algorithms for distributed constraint
optimization problems. In Coordination of Large-Scale
Multiagent Systems, pages 127–146. Springer-Verlag,
Heidelberg Germany, 2005.

[11] R. Marinescu. Exploiting problem decomposition in
multi-objective constraint optimization. In Proc. of the 15th
Int. Conf. on Principles and Practice of Constraint
Programming, pages 592–607. 2009.

[12] R.T. Marler and J.S. Arora. Survey of multi-objective
optimization methods for engineering. Structural and
Multidisciplinary Optimization, 26:369–395, 2004.

[13] P.J. Modi, W. Shen, M. Tambe, and M. Yokoo. ADOPT:
Asynchronous distributed constraint optimization with quality
guarantees. Artificial Intelligence Journal, 161:149–180, 2005.

[14] A. Mouaddib, M. Boussard, and M. Bouzid. Towards a formal
framework for multi-objective multi-agent planning. In Proc. of
the 6th Int. Conf. on Autonomous Agents and Multiagent
Systems, pages 801–808, 2007.

[15] A. Petcu and B. Faltings. DPOP: A scalable method for
multiagent constraint optimization. Proc. of the 19th Int.
Joint Conf. on Artificial Intelligence, pages 266 – 271, 2005.

[16] E. Rollón. Multi-Objective Optimization in Graphical Models.
PhD thesis, Universitat Politecnicá de Catalunya, 2008.

[17] A. Savikumar and C. Keng-Yan Tan. UAV swarm coordination
using cooperative control for establishing a wireless
communications backbone. In Proc. of the 9th Int. Conf. on
Autonomous Agents and Multiagent Systems, pages
1157–1164, 2010.

[18] D. A. Van Veldhuizen and G.B. Lamont. Multi-objective
evolutionary algorithm research: A history and analysis.
Technical report, Dept. Elec Comp. Eng. Graduate School of
Eng., 1998.

